EXECUTIVE COUNCIL

President
Brandon Walker
Dept. of Chemistry and Physics
Salem College
601 S. Church St.
Winston-Salem, NC 27101
Brandon.walker@salem.edu

Past-President
Terri Bruce
132 Long Hall
Clemson University
Clemson, SC 29634
terri@clemson.edu

President-Elect
Eric Formo
Georgia Electron Microscopy
151 Barrow Hall
115 D.W. Brooks Drive
University of Georgia
Athens, GA 30602
705.542.4080
eformo@uga.edu

Secretary
Cynthia Goldsmith
1600 Clifton Rd.
CDC Mailstop H18-SB
Atlanta, GA 30333
404.639.3306
cgoldsmith@cdc.gov

Member-at-Large
Deniz Ballero
555 North Indian Creek Dr
Georgia State University
Clarkson, GA 30021
904.729.7002
mal@SEMS.org

Past-President
Terri Bruce
132 Long Hall
Clemson University
Clemson, SC 29634
terri@clemson.edu

Member-at-Large
Paul Eason
University of North Florida
904.620.1875
Paul.Eason@unf.edu

APPOINTED OFFICERS

Historian
W. Gray Jerome, III
U-2206
Vanderbilt University
Medical Center
1161 21st Avenue, South
Nashville, TN 37232
615.322.5530
Jay.Jerome@vanderbilt.edu

Endowment
Charles D. Humphrey
Somewhere in the Mountains
Specs1A@hotmail.com

Proceedings Editor
John Shields
Georgia Electron Microscopy
151 Barrow Hall
115 D.W. Brooks Drive
University of Georgia
Athens, GA 30602
jpsheild@uga.edu

Photographer
Dayton Cash
Electron Microscopy Facility
Clemson University
91 Technology Drive
Anderson, SC 29625
864.656.2465
ecash@clemson.edu

Corporate Liaison
Rick Hirche
502 East Oak Hill Ave
Knoxville, TN 37917
865-603-4523
fredhric@gmail.com

Web Site Contact
Karen Kelley
University of Florida
ICBR
Electron Microscopy Core Lab
PO Box 110700
Gainesville, FL 32611
vau@ufl.edu
Acknowledgements
As an affiliate of MSA and MAS, we benefit by support for MSA and MAS invited speakers and meeting expenses.

Our *Corporate Members and Exhibitors* are an important part of our organization and make it possible for SEMS to have outstanding meetings and to publish the SEMS Proceedings. We thank them for their excellent service over the years and look forward to a bright and productive future.

Corporate Members and *Exhibitors* for the meeting as of this printing:

<table>
<thead>
<tr>
<th>ADVANCED MICROSCOPY TECHNIQUES</th>
<th>BRUKER</th>
<th>CARL ZEISS</th>
<th>DIATOME USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAX, Inc./AMETEK</td>
<td>ELECTRON MICROSCOPY SCIENCES</td>
<td>4DEEP INWATER IMAGING</td>
<td>GATAN</td>
</tr>
<tr>
<td>HITACHI HIGH TECHNOLOGIES OF AMERICA</td>
<td>IXRF SYSTEMS</td>
<td>JEOL USA</td>
<td>LEICA MICROSYSTEMS</td>
</tr>
<tr>
<td>MARTIN MICROSCOPES</td>
<td>OXFORD INSTRUMENTS</td>
<td>PARK AFM</td>
<td>PROTOCHIPS</td>
</tr>
<tr>
<td>RAVE SCIENTIFIC</td>
<td>TED PELLA</td>
<td>TESCAN</td>
<td>THERMO FISHER SCIENTIFIC</td>
</tr>
<tr>
<td>TOUSIMIS</td>
<td>VASHAW SCIENTIFIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Welcome From the President

Dear SEMS members,

It is with great pleasure that I welcome you to the 55th Annual Southeastern Microscopy Society Conference in Chattanooga, Tennessee. New York Times named Chattanooga one of the "Top 45 Places to go" in the World, and it is no wonder. Chattanooga is one of America's most breathtaking cities. Along with beautiful Chattanooga, we have an outstanding conference program awaiting your arrival. The conference program will offer an opportunity to explore Chattanooga, presentations from invited speakers, the Ruska Award competition, commercial exhibits, social opportunities for mingling with fellow attendees, and so much more!

On Wednesday, May 16, registration opens at 8:00 a.m. We will start conference events with an outing to Ruby Falls the nation's tallest and deepest underground waterfall. The commercial exhibits will be open all afternoon, followed by the always enjoyable Corporate Mixer and poster exhibits. We have a fantastic program of presentations on Thursday and Friday morning. Once again, we have an exciting group of Ruska competitors and a fantastic line-up of invited speakers.

This year, we are pleased to welcome our MAS-sponsored speaker, Larry Allard, from the Oak Ridge National Laboratory (Oak Ridge, TN), and our MSA-sponsored speaker, Amelia Dempere, from the University of Florida. Also, our Ann Ellis Speaker will be Caroline Miller, from Indiana University–Purdue University Indianapolis. On Thursday evening, our Annual Banquet will feature a wonderful dinner catered by Ruth's Chris Steakhouse and an opportunity to be "entertained." The society’s business breakfast will be held on Friday at 9:00 a.m., followed by the last group of presentations before officially closing the meeting at noon.

Looking back on my years of membership in SEMS, I reflect on the memories and the importance of this great organization. I think about the many faces, the vendor socials, and all of the mysterious images! Connecting with SEMS on a regular basis allowed me to educate myself on new products and trends and position myself to serve my facility users better. I am happy to be listed as a regular SEMS member because of the connections we share and the offerings of our regional microscopy society. If this is your first SEMS meeting, please know that we are all very excited that you are with us! We hope that you will consider joining us and becoming more involved in SEMS as we work together to continue to host our annual meetings with more opportunities for professional growth and development for the microscopy community.

One of our most valuable assets as a society is our people and I would be remised if I did not take the time to thank the hardworking executive council, the 2019 Local Arrangements Committee (Chair, Cynthia Goldsmith) and Program Committee members (Chair, Paul Eason) for their commitment to making our time together in Chattanooga exceptional!

Finally, to all of you…our loyal SEMS members and corporate sponsors…thank you for your continued support of this wonderful organization!

Here’s to another FANTASTIC meeting!

Brandon M. Walker, SEMS President 2019
SEMS 2019 PROGRAM

WEDNESDAY, MAY 15

REGISTRATION – 8am to 4:30pm PRE-FUNCTION HALLWAY

Outing to Ruby Falls 1:45pm from Hotel

Executive Council Meeting: 11:30am RUTH’S CHRIS RESTAURANT (HOTEL)

6:00pm – 8:00pm CORPORATE MIXER SALON E-G

POSTERS AND EXHIBITS
THURSDAY MORNING, MAY 16

Registration – 8:30am to 5pm

PF HALLWAY

SESSION 1
RUSKA COMPETITION

9:00 am – 9:15 am Cell Viability Assessment and Structural Analysis of Filamentous Fungal Biofilms Using Confocal Laser Scanning Microscopy and COMSTAT program A. Shailaja, J.L. Kerrigan- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC

9:15 am – 9:30 am Exosome and extracellular vesicle isolation and biomarker detection using Hydrophobic Interaction Chromatography (HIC) and poly(ethylene terephthalate (PET) Capillary-Channeled Polymer (C-CP) fiber solid phase Tyler Slonecki1, Terri F. Bruce1, Sisi Huang2, Lei Wang2, Kaylan Kelsey2, Rhonda Powell1, Kenneth Marcus2, 1 Clemson Light Imaging Facility and 2 Department of Chemistry, Clemson University, Clemson, SC 29634

9:30 am – 10:00 am BREAK (PLEASE VISIT EXHIBITORS) SALON E-G

SESSION 2

9:00 am – 9:15 am Cell Viability Assessment and Structural Analysis of Filamentous Fungal Biofilms Using Confocal Laser Scanning Microscopy and COMSTAT program A. Shailaja, J.L. Kerrigan- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC

9:15 am – 9:30 am Exosome and extracellular vesicle isolation and biomarker detection using Hydrophobic Interaction Chromatography (HIC) and poly(ethylene terephthalate (PET) Capillary-Channeled Polymer (C-CP) fiber solid phase Tyler Slonecki1, Terri F. Bruce1, Sisi Huang2, , Lei Wang2, Kaylan Kelsey2, Rhonda Powell1, Kenneth Marcus2, 1 Clemson Light Imaging Facility and 2 Department of Chemistry, Clemson University, Clemson, SC 29634

9:30 am – 10:00 am BREAK (PLEASE VISIT EXHIBITORS) SALON E-G

10:30 am – 11:30 am MAS Sponsored Speaker: Latest Experimental Capabilities in In Situ Heating and Gas-Reaction Studies in Aberration-Corrected Electron Microscopy, Dr. Larry Allard

11:30 am - 11:45 am Applications of CMOS-Based Imaging Sensors for High-Speed EBSD Mapping, Roger Kerstin

11:45 am - 12:00 pm Leica Microsystems New THUNDER Imagers, Chris Murphy

12:00 pm – 1:30pm LUNCH (ON YOUR OWN)
THURSDAY AFTERNOON, MAY 16

SESSION 5 MODERATOR: --- RICK HIRCHE SALON D

1:30 pm - 2:30 pm MSA Sponsored Speaker - Combining Tomography and Surface Reconstruction in 3D Characterization. Luisa A. Dempere, Ph.D.

2:30 pm - 3:00 pm Break

3:00 pm – 3:30 pm Life-Threatening Illnesses Associated with Organ Transplantation Cynthia S. Goldsmith

3:30 pm – 4:00 pm Improved Method for Negative Staining of High Density Lipoprotein (HDL) Detects More Surface Detail without Modifying Particle Morphology Rachel C. Hart

4:00 pm – 4:50 pm Ann Ellis Lecture - Capturing Nature’s CAD File: Photogrammetry in an SEM, E.L. Principe, Ph.D.

4:50 pm GENERAL SESSION CLOSING REMARKS: ERIC FORMO

6:00 pm - 7:00 pm SOCIAL SALONS E-G

7:00 pm – 9:00 pm BANQUET & AWARDS SALONS A-C

FRIDAY MORNING, MAY 17

9:00am-10:30am BUSINESS BREAKFAST SALONS A-C

NO PRESENTATIONS ON FRIDAY
Pre-Function Hallway
 Registration and Poster Session
Salons E-G
 Exhibitors, Corporate Mixer, Breaks, and Pre-Banquet Social
Salon D
 Presentations
Salons A-C
 Banquet and Business Breakfast
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Institution</th>
<th>Year</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Danny Akin</td>
<td>Univ. of Georgia</td>
<td>1990</td>
<td>Chi-Guang Wu</td>
<td>Univ. of Florida</td>
</tr>
<tr>
<td>1973</td>
<td>John Wolosewick</td>
<td>Univ. of Georgia</td>
<td>1991</td>
<td>Karen Snetselaar</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1974</td>
<td>Murray Bakst</td>
<td>Univ. of Georgia</td>
<td>1992</td>
<td>Yun-Ta Ma</td>
<td>Clemson Univ.</td>
</tr>
<tr>
<td>1975</td>
<td>William Henk</td>
<td>Univ. of Georgia</td>
<td>1992</td>
<td>Theresa Singer</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1976</td>
<td>Durland Fish</td>
<td>Univ. of Florida</td>
<td>1992</td>
<td>Kerry Robinson</td>
<td>Clemson Univ.</td>
</tr>
<tr>
<td>1978</td>
<td>Dwayne Findley</td>
<td>N.C. State Univ.</td>
<td>1993</td>
<td>Julia Kerrigan</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1979</td>
<td>Glen Watkins</td>
<td>N.C. State Univ.</td>
<td>1994</td>
<td>John Shields</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1979</td>
<td>John Weldon</td>
<td>Univ. of Georgia</td>
<td>1994</td>
<td>Meral Keskintepe</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1980</td>
<td>Michael Dresser</td>
<td>Duke University</td>
<td>1995</td>
<td>Katalin Enkerli</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1981</td>
<td>Michael Short</td>
<td>W. Georgia Coll.</td>
<td>1996</td>
<td>Rhonda C. Vann</td>
<td>MS State Univ.</td>
</tr>
<tr>
<td>1982</td>
<td>Mark Rigler</td>
<td>Univ. of Georgia</td>
<td>1997</td>
<td>K.J. Aryana</td>
<td>MS State Univ.</td>
</tr>
<tr>
<td>1982</td>
<td>Chris Sunderman</td>
<td>Univ. of Georgia</td>
<td>1998</td>
<td>Timothy</td>
<td>Wakefield Auburn Univ.</td>
</tr>
<tr>
<td>1983</td>
<td>Patricia Jansma</td>
<td>Univ. of Georgia</td>
<td>1999</td>
<td>Wendy Riggs</td>
<td>Auburn Univ.</td>
</tr>
<tr>
<td>1985</td>
<td>Mark Brown</td>
<td>Univ. of Georgia</td>
<td>2000</td>
<td>Gail J. Celio</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1986</td>
<td>Judy King</td>
<td>E. Tenn State Univ.</td>
<td>2001</td>
<td>Joanne Maki</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1986</td>
<td>Peter Smith</td>
<td>Clemson Univ.</td>
<td>2002</td>
<td>Rocio Rivera</td>
<td>Univ. of Florida</td>
</tr>
<tr>
<td>1987</td>
<td>Robert Roberson</td>
<td>Univ. of Georgia</td>
<td>2003</td>
<td>Patrick Brown</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td>1988</td>
<td>Rajendra Chaubal</td>
<td>Univ. of Georgia</td>
<td>2003</td>
<td>Heather Evans</td>
<td>Univ. of S.C. Medical College</td>
</tr>
<tr>
<td>1989</td>
<td>Josephine Taylor</td>
<td>Univ. of Georgia</td>
<td>2005</td>
<td>Janet Donaldson</td>
<td>MS State Univ.</td>
</tr>
<tr>
<td>1989</td>
<td>Graham Piper</td>
<td></td>
<td>2006</td>
<td>Sangmi Lee</td>
<td>MS State Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>Jennifer Seltzer</td>
<td>MS State Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>Tao Wu</td>
<td>Georgia Tech</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Katherine Mills-Lujan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>Shanna Hanes</td>
<td>Auburn Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2010</td>
<td>Kirthi Yadagiri</td>
<td>Clemson Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011</td>
<td>Maria Mazillo-May</td>
<td>Auburn Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>David Lovett</td>
<td>Univ. of Florida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2013</td>
<td>S. Patnaik</td>
<td>MS State Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2014</td>
<td>Katherine Dye</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2015</td>
<td>Zulong Ke</td>
<td>Georgia Tech</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2015</td>
<td>A.A. Trofimov</td>
<td>Clemson Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2016</td>
<td>Wren Gregory</td>
<td>Clemson Univ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2016</td>
<td>James Kizziah</td>
<td>Univ. Alabama,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2017</td>
<td>Roshini Ramachandran</td>
<td>Birmingham</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2018</td>
<td>Christopher Isley</td>
<td>Univ. of Georgia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distinguished Scientists

Jerome Paulin 1984
Ben Spurlock 1985
Ivan Roth 1986
Gene Michaels 1987
Sara Miller 1991
Raymond Hart 1993
James Hubbard 1995
Charles Humphrey 1996
Johnny L. Carson 2000
W. Gray Jerome III 2000
Charles W. Mims 2001
Danny Aiken 2002
Robert Price 2003
E. Ann Ellis 2009
Glenn Cohen 2010
Robert Simmons 2011

Distinguished Corporate Members

Harvey Merrill 1989
Charles Sutlive 1989
Ted Wilmarth 1989
Ray Gundersdorff 1997
Charles and Betty Sutlive 2000
John Bonnici 2002
Doug Griffith 2007
Robert Hirche 2008
Ron Snow 2009
Al Coritz 2011

Roth-Michaels Teaching Award

James Sheetz 2005
Charles Mims 2006
<table>
<thead>
<tr>
<th>Year</th>
<th>Presidents/Chairpersons</th>
<th>Year</th>
<th>Presidents/Chairpersons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964-65</td>
<td>Anthony Kittane</td>
<td>1995-96</td>
<td>Jay Jerome</td>
</tr>
<tr>
<td>1965-66</td>
<td>John Brown</td>
<td>1996-97</td>
<td>Mark Farmer</td>
</tr>
<tr>
<td>1967-68</td>
<td>Ronald Fraser</td>
<td>1998-99</td>
<td>Robert Price</td>
</tr>
<tr>
<td>1968-69</td>
<td>Ivan Roth</td>
<td>1999-2000</td>
<td>Buddy Stephens</td>
</tr>
<tr>
<td>1969-70</td>
<td>Emilio Mora</td>
<td>2000-01</td>
<td>Jim Sheetz</td>
</tr>
<tr>
<td>1970-71</td>
<td>Ralph Ramsey</td>
<td>2001-02</td>
<td>Glenn Cohen</td>
</tr>
<tr>
<td>1971-72</td>
<td>N.M. McClung</td>
<td>2002-03</td>
<td>Charles Mims</td>
</tr>
<tr>
<td>1972-73</td>
<td>Walter Humphreys</td>
<td>2003-04</td>
<td>Greg Erdos</td>
</tr>
<tr>
<td>1973-75</td>
<td>Jim Hubbard</td>
<td>2004-05</td>
<td>John Shields</td>
</tr>
<tr>
<td>1975-76</td>
<td>Edward DeLamater</td>
<td>2005-06</td>
<td>Judy King</td>
</tr>
<tr>
<td>1976-77</td>
<td>Eleanor Smithwick</td>
<td>2006-07</td>
<td>Johnny Carson</td>
</tr>
<tr>
<td>1977-78</td>
<td>Gene Michaels</td>
<td>2007-08</td>
<td>Robert Simmons</td>
</tr>
<tr>
<td>1978-79</td>
<td>Edith McRae</td>
<td>2008-09</td>
<td>Giselle Thibeadeau</td>
</tr>
<tr>
<td>1979-80</td>
<td>Jerome Paulin</td>
<td>2009-10</td>
<td>Robert Price</td>
</tr>
<tr>
<td>1980-81</td>
<td>Ken Muse</td>
<td>2010-11</td>
<td>Michael Miller</td>
</tr>
<tr>
<td>1981-82</td>
<td>Mary Beth Thomas</td>
<td>2011-12</td>
<td>E. Ann Ellis</td>
</tr>
<tr>
<td>1982-83</td>
<td>Jack Munnell</td>
<td>2012-13</td>
<td>Richard Brown</td>
</tr>
<tr>
<td>1983-84</td>
<td>Sara Miller</td>
<td>2013-14</td>
<td>W.Gray (Jay) Jerome</td>
</tr>
<tr>
<td>1984-86</td>
<td>Ray Hart</td>
<td>2014-15</td>
<td>Russ Goddard</td>
</tr>
<tr>
<td>1986-87</td>
<td>Glenn Cohen</td>
<td>2015-16</td>
<td>Mary Ard</td>
</tr>
<tr>
<td>1987-88</td>
<td>Gerry Carner</td>
<td>2016-17</td>
<td>Amelia Dempere</td>
</tr>
<tr>
<td>1988-89</td>
<td>Danny Akin</td>
<td>2017-18</td>
<td>Terri Bruce</td>
</tr>
<tr>
<td>1989-90</td>
<td>Johnny Carson</td>
<td>2018-19</td>
<td>Brandon Walker</td>
</tr>
<tr>
<td>1990-91</td>
<td>Janet Woodward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991-92</td>
<td>Charles Mims</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992-93</td>
<td>Charles Humphrey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993-94</td>
<td>Sandra Silvers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994-95</td>
<td>JoAn Hudson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POSTER
Structure of an Insecticidal Toxin and Engineering for Clinical Applications

Cole L. Martin1, Todd J. Green2, Lawrence J. DeLucas3, Christopher D. Radka4 and Stephen G. Aller1
Departments of Pharmacology1 and Microbiology2, University of Alabama at Birmingham; The Aerospace Corporation3 and St. Jude’s Children’s Hospital4.

We have solved the structure of the insecticidal toxin, XptA2, at 3.2 Å resolution utilizing both cryo-EM and x-ray crystallography. XptA2 contains cell surface targeting IgG-like domains constructed around a pentameric toxin delivery channel and transmembrane piercing domains. A flexible linker domain in a similar tripartite toxin ortholog was previously proposed to be the driving force for conformational change into the pore forming state after binding to cell surface targets and internalization. Conversely, our structures reveal a high degree of disorder and a lack of strain on the linker region in the pre-pore state suggesting a low amount of potential energy. We therefore challenge the idea that the linker represents a spring initiating the transition from the pre-pore state into the pore state. We first tested the hypothesis that a continuous linker is not needed for XptA2 to fold and assemble into the pre-pore pentamer. XptA2 was expressed as two halves in which the linker was truncated by a stop codon introduced into “frag1”, and translation of “frag2” was initiated by an artificially introduced Methionine start codon. Two-fragment (“2-frag”) XptA2 was able to form a mature pre-pore pentamer by negative stain electron microscopy. Experiments to convert “2-frag” to the pore state are in progress. In parallel work, we have explored the idea of engineering XptA2 for clinical use. Importantly, wild type XptA2 is non-toxic to mice and is cleared in a manner that is similar to other control non-toxic proteins.

Small animal imaging studies were supported by grant P30CA013148, as part of the UAB Comprehensive Cancer Center’s Preclinical Imaging Shared Facility.
RUSKA

Cell Viability Assessment and Structural Analysis of Filamentous Fungal Biofilms Using Confocal Laser Scanning Microscopy and COMSTAT program

A. Shailaja, J.L. Kerrigan
Department of Plant and Environmental Sciences, Clemson University, Clemson, SC.

Biofilms are ubiquitous and of great concern because of their persistence in industrial, medical, and household environments. They are resilient structures, composed of aggregates of microorganisms that are adhered to a surface and enclosed in extracellular polymeric substances. We have been investigating filamentous fungal biofilms that are representative of those in the built environment, Aspergillus niger is being studied because it is ubiquitous and a model organism. The objectives of this research are to determine the best method to measure cell viability and to quantify biofilm features. One method utilizes the classical cell stain FUN-1 that exhibits orange-red fluorescent intravacuolar structures in metabolically active cells, while dead cells exhibits green-yellow fluorescence. The second method uses a combination of SYTO9 and Propidium iodide (PI). SYTO9 is a green fluorescent stain with a capacity to penetrate the active cell walls, and PI, is a red fluorescent stain that can penetrate the damaged cell membrane. Confocal microscopy and the computer program COMSTAT are being used to visualize fluorescent labelled cells and quantitating biofilms structures. The combination of nucleic acid stains SYTO9 and PI is more reliable for imaging and live-dead cells differentiation. The center portion of the biofilm contained more live cells when compared to the edge portion. Also, the edge portion contained conidiogenous cells and conidiophores. The viability of the edge portion was not homogenous, much of the biofilm cell was viable, but a minority of red fluorescent nonviable cells was also noted. Once the statistical analysis is completed, this protocol will be employed to test the efficacy of different anti-fungal biofilm agents.

This work is supported by Clemson Light Imaging Facility, Clemson University, SC
Exosomes are a subtype of extracellular vesicles approximately 30-150 nm in diameter that serve a variety of functions within cell communication and, ultimately, in normal and abnormal physiological processes. Manipulation and engineering of exosomes may result in medical applications in fields ranging from disease diagnostics, drug delivery, immunotherapy, regenerative medicine, and cancer therapeutics. Consequently, isolation and separation of intact and stable exosomes is critical for downstream analysis and future applications. Although exosome research is driving incredible innovation in laboratory settings, a consistent, quick, and cost effective exosome isolation method is lacking for clinical translation. This research demonstrates that exosomes and extracellular vesicles can be captured using Hydrophobic Interaction Chromatography (HIC) combined with poly(ethylene terephthalate (PET) Capillary Channeled Polymer (C-CP) fiber solid phase. Furthermore, this technique, with modification, offers a promising exosome isolation method that can offer realistic solutions in a clinical setting. In addition to chromatographic analysis of vesicles from cell culture media, urine, plasma, and cervical mucus, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and fluorescent microscopy have been used to verify the presence of exosomes and extracellular vesicles on the PET C-CP fibers within HIC conditions. In addition to exosome isolation, PET C-CP fibers in combination with protein marker antibodies are being investigated as a viable medium for biomarker detection for ovarian cancer (OC).

Acknowledgements: Dr. Terri Bruce, Rhonda Powell, Dr. Ken Marcus, Sisi Huang, Lei Wang, Kaylan Kelsey. George Wetzel and Donald Mulwee at the Clemson Electron Microscopy Facility for help with SEM and TEM imaging

Funding: The Gibson Foundation The Eppley Foundation for Scientific Research.
MAS Sponsored Speaker:

Latest Experimental Capabilities in *In Situ* Heating and Gas-Reaction Studies in Aberration-Corrected Electron Microscopy

Dr. Larry Allard - Oak Ridge National Laboratory

There has been a marked increase in the past decade in the development of new technologies that permit a variety of *in situ* experiments on materials to be conducted in electron microscopy. Among the many methods (electrical measurements, mechanical property measurements, reactions in liquids, etc.) are the newest capabilities for heating samples and doing elevated temperature gas reactions, using microfabricated heating elements (so-called “MEMS-based devices,” or “E-chips”) as the base platform for both capabilities. We have collaborated with Protochips Co. (Raleigh, NC) since 2006 in the development first of holders for heating in vacuum, and then of holders that incorporate the E-chip heaters in a closed-cell configuration to allow gas reactions at pressures up to a full atmosphere to be conducted *in situ*. A primary issue with the use of E-chip heaters is that specimens have to be electron transparent; powder samples are ideal since they can be deposited easily on the E-chip. Bulk samples must first be thinned appropriately; focused-ion-beam milling is a natural method to make thin foil samples, but Ga-FIB instruments always leave residual Ga on the sample. To avoid Ga, a bad contaminant for aluminum, we have recently explored the use of Xe-plasma FIB methods to cut and affix thin lamellae of Al alloys onto E-chips, with outstanding success…examples of the utility of Xe-PFIB methods to prepare samples for *in situ* heating to study precipitation processes in Al alloys will be given. In the area of gas-cell technology, our latest effort has been to develop the methods and protocols to introduce water vapor into gaseous reactions, at percentages higher than possible at room temperature and atmospheric pressure (about 2%, or ~17 Torr partial pressure). This has involved incorporation of a residual gas analyzer (RGA) into our gas-cell system. The RGA permits not only water vapor in the gas through the cell to be confirmed, but also the total composition of any reacting gas to be quantified, and the ability to confirm that, for reduction reactions, no significant oxygen species are present, as e.g. from an air leak. Examples of these new gas-cell *in situ* capabilities will also be given.
Combining Tomography and Surface Reconstruction in 3D Characterization.

Luisa A. Dempere1, Edward L. Principe2, Gary Scheiffele1, Ana C. Bohórquez1

The combination of multi-scale methods of microscopy and tomography has been proven to provide a comprehensive methodology for 3D characterization of materials. This methodology has been found to be particularly useful for samples with surface features and structures that are critical for the understanding of function, properties or behavior of the component/sample analyzed. Data from the characterization of a Green June Beetle (\textit{Cotinis Nitida}) will be presented as an example of the implementation of this methodology. This scarab exhibits structural color due to interferometric reflections in multilayers starting at the specimen’s surface and continuing below it. This example shows how this integrated approach can be used on 3D characterization of samples in which surface characteristics are a critical in complementing the evaluation of volumetric structures.

[1] Research Service Centers, Herbert Wertheim College of Engineering, University of Florida
Ann Ellis Lecture

Capturing Nature’s CAD File: Photogrammetry in an SEM

E.L. Principe, Ph.D. - PanoScientific, LLC

We will describe a form of photogrammetry performed in a scanning electron microscope (SEM) to create detailed quantitative micro and nano-scale 3D surface reconstructions of objects. Reconstruction of an arbitrary object can be accomplished by acquiring a series of 2D images while rotating and/or tilting the object on the microscope stage. Sample preparation and imaging conditions are critical to the quality of the reconstruction and ease of data processing. Data processing is similar to macro photogrammetry processing of objects and landscapes. The image capture sequence may be automated, the degree and ease of which depends upon accessibility to programmable stage and image acquisition control on the SEM. We will outline the workflow and discuss applications. We will show example data from automated acquisition to control the SEM imaging system and stage to acquire an image set to produce a 3D model. We will demonstrate combining this surface method with complementary x-ray micro CT and FIB-SEM nano tomography volumetric techniques for multi-modal analysis applied to a study of structural color. Captured digital data files may be 3D printed or visualized in a 3D PDF file. But these files may also be imported into 3D physics-based modeling software to analyze mechanical material response, heat transfer, electromagnetic properties, or any other attribute associated with the external surface of the 3D object.
Life-Threatening Illnesses Associated with Organ Transplantation

Cynthia S. Goldsmith
Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333

Organ and tissue transplantations have become relatively common surgical procedures, and on rare occasions, life-threatening illnesses have occurred in multiple recipients of organs transplanted from a common donor. CDC has been involved in the investigation of several clusters of fatal disease that were seen in organ transplant recipients. Tissue-based diagnostic examination, including histopathology and immunohistochemistry, electron microscopy, viral isolation, and PCR, allowed for the diagnosis of an etiologic agent in these transplant-associated cases. This presentation will cover infectious agents associated with organ transplantation, namely, West Nile virus, rabies virus, lymphocytic choriomeningitis virus, and microsporidia. The immunocompromised status of the organ recipients can contribute to the fulminant infections and profound consequences that followed.

Leica Microsystems New THUNDER Imagers

Chris Murphy
Leica Microsystems, Buffalo Grove, IL

Leica Microsystems has continued its innovation with its new line of Thunder Imagers. These new systems utilize an opto-digital advancement called “Computational Clearing.” This new capability enables users to utilize the speed and sensitivity inherent in widefield microscopes, while minimizing the haze from out of focus light that can limit researcher’s ability to visualize thicker specimen. This talk can offer some insights into how the technology works, as well as as what systems are available with this capability.
Improved Method for Negative Staining of High Density Lipoprotein (HDL) Detects More Surface Detail without Modifying Particle Morphology

Rachel C. Hart¹, John T. Melchior², Scott E. Street², Jamie Morris², Shimpi Bedi², W. Sean Davidson², and W. Gray Jerome¹.
¹Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, ²Department of Pathology and Laboratory Medicine, University of Cincinnati, OH

Negative stain transmission electron microscopy (TEM) has been used extensively for imaging and characterizing high density lipoproteins (HDL). While traditional negative staining methods have provided useful information, one limitation is the level of detail that can be visualized on the particle surface, particularly the resolution of proteins such as apolipoprotein A-I (APOA1). To overcome this limitation in our current studies, we have implemented a uranyl formate (UF) negative staining procedure for visualizing as well as quantifying diameter sizes in HDL preparations. Starting with the innovative approaches of Rames et al. [1] and by incorporating approaches from Ohi et al. [2], through trial and error we developed a UF procedure that provides more detail on the HDL surface (Fig. 1). Importantly, particle diameter size quantitation analyses using the UF procedure have yielded measurements consistent with our previous staining procedure, suggesting that the new procedure does not significantly alter particle morphology. The additional surface detail now allows us to explore 3-D reconstruction of HDL particles by single particle analysis.

Fig. 1. Micrographs of plasma HDL particles, taken on a Philips/Tecnai T12 100 keV TEM at 150,000x magnification. Scale bar represents 50 nm. A) Particles stained with 2% phosphotungstic acid, pH 6.0, using our previous PTA staining procedure. B) Particles stained with 0.7% uranyl formate (UF), pH ~4.5, using our new UF staining procedure.

TEM imaging was performed in part through the use of the Vanderbilt Cell Imaging Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, DK59637 and EY08126). This project was supported by NHLBI grant P01 HL116263.

References:
Applications of CMOS-Based Imaging Sensors for High-Speed EBSD Mapping

Roger Kerstin
EDAX/Ametek, Mahwah, NJ

Complementary Metal-Oxide-Semiconductor (CMOS) based imaging sensors have recently been used for the collection of Electron Backscatter Diffraction (EBSD) patterns in an SEM for orientation imaging applications. The advantage of a CMOS sensor, compared to a traditional Charge Coupled Device (CCD) sensor, is the fast frames rates that are achievable while providing a larger pixel resolution image. In this work, an EDAX Velocity Super CMOS detector was used to index at speeds of 4,500 patterns per second at 120 x 120 pixel resolution, compared to 1,400 patterns per second at 30 x 30 pixel resolution for a CCD-based detector. These speeds can be obtained at comparable SEM beam currents, with equivalent or better quality. Results from different materials including steel, nickel, aluminum, and titanium alloys will be shown to demonstrate the indexing accuracy and precision that can be achieved at these fast acquisition rates.